
A Comparative Study of Constrained
Multi-objective Evolutionary Algorithms on

Constrained Multi-objective Optimization Problems
Zhun Fan

Department of Electronic Engineering
Shantou University

Guangdong, Shantou 515063

Yi Fang
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Wenji Li
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Jiewei Lu
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Xinye Cai
College of Computer Science and
Technology, Nanjing University of

Aeronautics and Astronautics
Jiangsu, Nanjing 210016

Caimin Wei
Department of Mathematics

Shantou University
Guangdong, Shantou 515063

Abstract—Solving constrained multi-objective optimization
problems is a difficult task, it needs to simultaneously optimize
multiple conflicting objectives and a number of constraints. This
paper first reviews a number of popular constrained multi-
objective evolutionary algorithms (CMOEAs) and twenty-three
widely used constrained multi-objective optimization problems
(CMOPs) (including CF1-10, CTP1-8, BNH, CONSTR, OSY,
SRN and TNK problems). Then eight popular CMOEAs with
simulated binary crossover (SBX) and differential evolution
(DE) operators are selected to test their performance on the
twenty-three CMOPs. The eight CMOEAs can be classified
into domination-based CMOEAs (including ATM, IDEA, NSGA-
II-CDP and SP) and decomposition-based CMOEAs (includ-
ing CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-
IEpsilon). The comprehensive experimental results indicate
that IDEA has the best performance in the domination-based
CMOEAs and MOEA/D-IEpsilon has the best performance in
the decomposition-based CMOEAs. Among the eight CMOEAs,
MOEA/D-IEpsilon with both SBX and DE operators has the best
performance on the twenty-three test problems.

I. INTRODUCTION

The real-world optimization problems usually involve the
simultaneous optimization of multiple conflicting objectives
with a number of constraints. Without loss of generality, a
constrained multi-objective optimization problem (CMOP) can
be defined as follows [1]:

minimize F(x) = (f1(x), . . . , fm(x))
T (1)

subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

x ∈ Rn

where F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is a m-
dimensional objective vector, gi(x) ≥ 0 defines i-th of q
inequality constraints, hj(x) = 0 defines j-th of q equality
constraints.

A solution x is feasible if it simultaneously meets gi(x) ≥ 0
for each i ∈ {1, . . . , q} and hj(x) = 0 for each j ∈
{1, . . . , p}. For two feasible solutions x1 and x2, solution
x1 is said to dominate x2 if fi(x

1) ≤ fi(x
2) for each

i ∈ {1, . . . ,m} and F (x1) 6= F (x2), denoted as x1 � x2.
For a feasible solution x∗ ∈ Rn, if there is no other feasible
solutions dominating x∗, x∗ is a Pareto optimal solution. The
set of all the Pareto optimal solutions is called a Pareto Set
(PS). The image of PS in the objective space is called a
Pareto Front (PF ), where PF = {F(x) ∈ Rm|x ∈ PS}.

When solving a CMOP, the objectives and constraints need
to be optimized simultaneously. CMOEAs are very suitable
for solving CMOPs, as they are able to obtain a set of non-
dominated solutions in a single run. Apparently, the constraint
handling mechanisms are critical for CMOEAs, which can be
roughly classified into penalty functions, separation of con-
straints and objectives, multi-objective evolutionary algorithms
(MOEAs) and hybrid methods.

In penalty functions, there are several different types, which
include death penalty [2], static penalty [3], dynamic penalty
[4], adaptive penalty [5–8] and so on. In the death penalty
approach [2], when a certain solution violates any constraints,
it is rejected and generated again. In the static penalty method
[3], the penalty factors, which balance the searching between
the feasible and infeasible regions, remain constant during
the entire search process. In the dynamic penalty method [4],
the penalty factors usually increase over time. The adaptive
penalty method [5–8] takes feedbacks from the search process,
such as the portion of feasible solutions and the average value
of the constraint violations, and these feedbacks are utilized
to adjust the penalty factors adaptively.

The main issue of the penalty functions of constraint han-
dling is that the ideal penalty factors can not be known in
advance for an arbitrary CMOP, thus tuning the penalty factors
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is a very tedious task.
In the separation of constraints and objectives, the objec-

tives and constraints are handled separately. Representative
approaches of this type include constraint dominance principle
(CDP) [9], stochastic ranking (SR) [10] and epsilon constraint
handling [11]. In CDP [9], three rules are applied to compare
any two solutions. For solutions x1,x2, if x1 is feasible and
x2 is infeasible, x1 is better than x2. If x1 and x2 are both
infeasible, the one with the smaller constraint violation is
better. If x1 and x2 are both feasible, the one dominating the
other is better. In the SR method [10], the comparison of any
two solutions is based on their objectives or constraints with a
predefined probability. The epsilon constraint handling method
[11] is similar to CDP, the only difference is that a solution is
treated as a feasible solution if its constraint violation is less
than a given threshold ε. when ε equals to zero, the epsilon
constraint handling method is equivalent to CDP.

The constraint handling method of MOEAs transforms a
CMOP to an unconstrained MOP by converting the constraints
into an extra objective. Representative method is Cai and
Wang’s Method (CW) [12]. The in-feasibility driven evolution-
ary algorithms (IDEA) [13] also adopts this method to handle
constraints. In its infeasible sub-population, the constraints are
converted into an extra objective, and non-dominated ranking
are utilized to sort the infeasible sub-population with m + 1
objectives.

The hybrid methods of constraint handling usually adopt
several methods together to handle constraints. The adaptive
trade-off model (ATM) [14] adopts two mechanisms - MOEAs
and adaptive penalty functions to handle constraints.

The remainder of this paper is organized as follows. Section
II introduces a number of representative CMOEAs. Section
III gives a brief review of the existing CMOPs. Section IV
designs a comprehensive experiments to compare the existing
CMOEAs, and Section VII concludes the paper.

II. RELATED WORKS OF CMOEAS

A CMOEA consists of two parts, one part is the constraint
handling and the other part is the MOEA. In terms of MOEAs,
the existing methods can be categorized into domination-
based, decomposition-based and indicator-based approaches
according to their selection approaches. However, there has
been rare work conducted for indicator-based CMOEAs.

In the domination-based CMOEAs, non-dominated ranking
is adopted to rank the solutions. Representative methods
consist of ATM[14], IDEA[13], NSGA-II with constrained
dominance principle (NSGA-II-CDP)[9], self-adaptive penalty
(SP)[8].

In ATM [14], the working population is classified into three
situations according to the feasibility proportion of the current
population - the infeasible, semi-infeasible and feasible phases.
In the infeasible situation, the constraints are converted to an
extra objective in ATM. Therefore, a CMOP with m objectives
and p + q constraints is transformed into an unconstrained
MOP with m+ 1 objectives. In the semi-infeasible situation,
a penalty function is adopted to integrate the constraints in the

m objectives, and non-dominated sorting is applied on the m
integrated objectives. In the feasible situation, non-dominated
sorting is adopted directly on the m objectives.

IDEA [13] explicitly maintains a small proportion of in-
feasible solutions close to the constraint boundaries during its
evolution process. More specifically, it divides the population
into feasible and infeasible sub-population. In the infeasible
sub-population, the constraints are converted to an extra ob-
jective, and non-dominated ranking is adopted to rank the
solutions with m + 1 objectives. Then, a small proportion of
infeasible solutions are selected firstly from the infeasible sub-
population. The rest of solutions are successively selected from
the feasible sub-population according to their non-dominated
ranks.

NSGA-II-CDP [9] adopts CDP to handle constraints. In
NSGA-II-CDP, feasible solutions have better non-dominated
ranks than any infeasible solutions, and for two infeasible
solutions, the one with the smaller overall constraint violation
has a better rank. In fact, NSGA-II-CDP divides the population
into one feasible and one infeasible sub-population. In the
feasible sub-population, non-dominated ranking is executed on
objectives directly to select solutions. In the infeasible sub-
population, solutions are ranked based on their overall con-
straint violations. NSGA-II-CDP first selects offspring from
the feasible sub-population, and then selects solutions from
the infeasible sub-population until the number of offspring
reaching the population’s size.

SP [8] adopts an adaptive penalty function and a distance
function to handle the constraints. These two functions vary
dependent upon the objectives and the overall constraints
violation of a solution. The fitness function of i− th objective
is the sum of its penalty and distance function. The proportion
of feasible solutions in the population is adopted to balance the
search preference between the feasible and infeasible regions.

In the decomposition-based CMOEAs, A CMOP is decom-
posed into a set of constrained single objective optimization
subproblems, and these subproblems are solved in a col-
laborative way. Representative methods include CMOEA/D
[15], MOEA/D-CDP [16], MOEA/D-SR [16] and MOEA/D-
IEpsilon [17].

CMOEAD [15] embeds epsilon constraint handling ap-
proach in MOEA/D, and the epsilon value is set adaptively for
comparison. For two solutions, if their constraint violations
are both less than the epsilon value or they have the same
constraint violations, the one with the better aggregation value
is selected. Otherwise, the one with the smaller constraint
violation is selected.

MOEA/D-CDP [16] adopts the CDP to handle constraints
in the framework of MOEA/D. For two feasible solutions,
the one with the better aggregation value is selected. For
two infeasible solutions, the one with the smaller constraint
violation is selected. For a feasible and an infeasible solution,
the feasible one is selected.

MOEA/D-SR [16] applies SR to handle constraints in the
framework of MOEA/D. In MOEA/D-SR, a parameter pf
decides the probability of using the objectives to compare two
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solutions. For two solutions, if a random is less than pf , the
one with better aggravation value is selected into next gener-
ation. If the random is greater than pf , the solutions selection
is similar to the MOEA/D-CDP. If pf = 0, MOEA/D-SR is
equivalent to MOEA/D-CDP.

MOEA/D-IEpsilon [17] applies an improved epsilon con-
straint handling method in the framework of MOEA/D. Unlike
the original epsilon setting method with a decreasing epsilon
level, the epsilon level in MOEA/D-IEpsilon is increased if
the proportion of feasible solutions in the current population
is greater than a predefined threshold.

III. THE EXISTING CMOPS

Currently, the common widely tested CMOPs include CF
[18], CTP[1], BNH [19], CONSTR [1], OSY [20], SRN
[21] and TNK [22] problems. The feasible regions of these
problems except OSY are shown in the green part of Fig.
1. The PFs without considering constraints of these problems
except OSY are shown in the red part of Fig. 1. For OSY
problem, it is too difficult to sample the feasible regions in
the objective space. Only the PF of OSY problem is plotted
as shown in Fig. 1(u).

For CF1-3 and CF8-10, their PFs are a part of their uncon-
strained PFs as shown in Fig. 1(a)-(c) and Fig. 1(h)-(j). The
constraints of CF1-3 and CF8-10 have the difficulties in the
entire search space. However, the PFs of these problems can
be achieved by MOEAs without considering any constraints.
After MOEAs get the unconstrained PFs of these problems,
the set of feasible solutions are their constrained PFs. For CF4-
7, their PFs are partly constructed by their unconstrained PFs
and partly constructed by their constraint boundaries as shown
in Fig. 1(d)-(g). The constraints of these problems have the
difficulties near their PFs.

For CTP test instance, the constraints are constructed by
each objective. The PF of CTP1 consists of two parts as shown
in Fig. 1(k), one part is on the boundaries of constraints, and
the other one is a part of the unconstrained PF of CTP1. The
constraints of CTP1 have the difficulties near its PF. For CTP2-
CTP6 and CTP8, their PFs locate at the boundaries of their
constraints as shown in Fig. 1(l)-(p) and Fig. 1(r). For CTP7,
the PF is a part of its unconstrained PF as shown in Fig. 1(q).
The constraints of CTP2-8 have the difficulties in the entire
search space. For BNH, CONSTR and SRN, the PFs are partly
constructed by their unconstrained PFs and partly constructed
by their boundaries of constraints as shown in Fig. 1(s), Fig.
1(t) and Fig.1(v). The Constraints of these problems make
their original unconstrained PFs partially feasible. The PFs of
OSY and TNK all locate on their constraint boundaries. As
the objectives for TNK are not conflicting with each other, its
PF without constraints is degenerated into only one point, as
shown in Fig.1(w).

Based on the above analysis, the existing CMOPs can be
helpful to evaluate the performance of algorithms on CMOPs
with different properties. However, some limitations may also
exist to hinder their further performance on testing algorithms,
as follows. For CTP test problems, the first objective is

so simple that the diversity of population can be easily
maintained, which may not help to evaluate the ability of
maintaining diversity for a CMOEA. For CF test instance,
the objective functions are so difficult to evaluate the effect of
constraint handling mechanisms. For BNH, CONSTR, OSY,
SRN and TNK, the dimension of decision vector is too low to
evaluate the performance of CMOEAs. In the above CMOPs,
the proportion of feasible regions are relatively large, and the
constraint handling mechanism may not play any important
roles on the run time of a algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

To verify the advantages and disadvantages of the existing
CMOEAs, eight CMOEAs with simulated binary crossover
(SBX) and differential evolution (DE) crossover are tested on
the twenty-three CMOPs. The detailed parameters of these
algorithms are listed as follows:

1) Setting for reproduction operators: The mutation proba-
bility Pm = 1/n (n is the number of decision variables).
For the polynomial mutation operator, the distribution
index is set to 20. For the SBX operator, the distribution
index is set to 20. For the DE operator, CR = 0.9 and
f = 0.5.

2) Population size: for two-objective CMOPs, N = 200,
for three-objective CMOPs, N = 300.

3) Number of runs and stopping condition: Each algo-
rithm runs for 30 times independently. For two-objective
CMOPs, the algorithm stops until 100000 function eval-
uations. For three-objective CMOPs, the algorithm stops
until 150000 function evaluations.

4) Neighborhood size: T = 0.1N .
5) Probability of selecting subproblems in the neighbor-

hood: δ = 0.9.
6) The maximal number of solution replacements: nr = 2.
7) Other parameters for MOEA/D-IEpsilon: α = 0.8, Tc =

400, cp = 2, τ = 0.1 and θ = 0.2NI . NI is the number
of infeasible solutions in the initial population.

B. Performance Metric

To measure the performance of ATM, CMOEA/D,
IDEA, MOEA/D-CDP, MOEA/D-SR, NSGA-II-CDP, SP and
MOEA/D-IEpsilon, the inverted generation distance (IGD)[23]
metric is adopted. The definitions of IGD is listed as follows:
• Inverted Generational Distance (IGD):

The IGD metric reflects the performance of convergence and
diversity simultaneously. The detailed definition is listed as
follows: 

IGD(P ∗, A) =

∑
y∗∈P∗

d(y∗,A)

|P∗|

d(y∗, A) = min
y∈A
{
√∑m

i=1(y
∗
i − yi)2}

(2)

where P ∗ is the ideal Pareto front set, A is an approximate
Pareto front set achieved by an algorithm. The values of IGD
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Fig. 1. Illustrations on the feasible regions of CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK problems.

denotes the distance between P ∗ and A. For CMOPs with
two objectives, 1000 points are sampled in the PFs uniformly
to construct the set of P ∗. For CMOPs with three objectives,
10000 points are sampled in the PFs uniformly. It is worth
noting that the smaller value of IGD represents the better
performance of both diversity and convergence.

C. Experimental Discussion

Table I shows the mean and standard deviation values of
IGD of the eight tested CMOEAs with the SBX operator

on CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK
problems. For CF1 and CF7-8, MOEA/D-IEpsilon is better
than the other seven CMOEAs. IDEA performs better than the
other seven CMOEAs on CF2-CF6. CMOEA/D works better
than the other seven CMOEAs on CF9. For CF10, all the tested
CMOEAs except MOEA/D-IEpsilon have infinite mean values
of IGD, which means that these CMOEAs sometimes can not
achieve any feasible solutions during the 30 independent runs.
However, MOEA/D-IEpsilon can always get feasible solutions
in the 30 independent runs. For CTP1, CTP5 and OSY
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problems, ATM gets the best results among the eight tested
CMOEAs. MOEA/D-IEpsilon performs better than the other
seven CMOEAs on CTP2, CTP4, CTP6-8, CONSTR, SRN
and TNK problems. For CTP3, SP has the best performance
among the eight CMOEAs. For BNH problem, NSGA-II-CDP
is better than the other seven CMOEAs.

To rank the eight CMOEAs with SBX operator, we set the
total points for each CMOEA. If a CMOEA is better than
other seven CMOEAs on a certain problem, then it gets one
point. On the twenty-three test instances, MOEA/D-CDP and
MOEA/D-SR get zero point. ATM, CMOEA/D, NSGA-II-
CDP and SP get one point. IDEA gets seven points. MOEA/D-
IEpsilon gets twelve points. Therefore, MOEA/D-IEpsilon has
the best performance among the eight tested CMOEAs with
the SBX operator.

Table II shows the mean and standard deviation values in
terms of IGD obtained by the eight tested CMOEAs with
the DE crossover operator on the twenty-three problems. For
CF1, MOEA/D-CDP performs better than the other seven
CMOEAs, and MOEA/D-SR is better than the other seven
CMOEAs on CF2-3. For CF4-5 and CF7-10, MOEA/D-
IEpsion has better performance than the other seven CMOEAs.
For CF6, SP works better than the other seven CMOEAs. For
CTP1 and BNH problem, NSGA-II-CDP performs better than
the other seven CMOEAs. For CTP2-4, CTP6-8, SRN and
TNK problems, MOEA/D-IEpsilon has the best performance
among the eight CMOEAs. CMOEA/D is better than the
other seven CMOEAs on CTP5. IDEA works better than
other CMOEAs on CONSTR and OSY problems. On the
twenty-three test instances, ATM get zero point. CMOEA/D,
MOEA/D-CDP and SP get one point. IDEA, MOEA/D-SR,
and NSGA-II-CDP get two points. MOEA/D-IEpsilon gets
fourteen points. Therefore, MOEA/D-IEpsilon has the best
performance among the eight tested CMOEAs with the DE
operator.

From Table I and Table II, it can be observed that the
best mean IGD values obtained by the eight CMOEAs with
DE operator are better than their SBX versions on CF1-9
test instances. However, for CTP2-8 test instances, the best
mean IGD values obtained by CMOEAs with SBX operator
are better than their DE versions. We can summary that DE
operator works better than SBX operator on CF test problems,
and SBX operator works better than DE operator on CTP test
problems.

For OSY, IDEA with DE and SBX operators is always better
than the other seven CMOEAs. One possible reason is that the
PF of OSY locates on the boundaries of the constraints, and
IDEA introduces a small portion of infeasible solutions to its
population, which has the ability to help to search the solutions
on the boundaries of the constraints.

Among the eight tested CMOEAs, IDEA has the best perfor-
mance among the domination-based CMOEAs, and MOEA/D-
IEpsilon has the best performance among the decomposition-
based CMOEAs. Both CMOEAs explicitly increase the search
preference in the infeasible regions. We can summary that
increasing the searching preference appropriately in the in-

feasible regions can help to enhance the performance of a
CMOEA.

From the above experiment observation, we can conclude
that MOEA/D-IEpsilon has the best performance among the
eight tested CMOEAs with both DE and SBX operators on
the twenty-three test problems.

V. CONCLUSION

In this paper, we first review the existing CMOPs, and ob-
serve that the proportion of feasible regions of these problems
are relatively large, which may not be suitable to test the effect
of the constraint handling approaches in CMOEAs. Then eight
popular CMOEAs with SBX and DE operators are tested on
the twenty-three problems. The experimental results indicate
that IDEA has the best performance in the domination-based
CMOEAs, and MOEA/D-IEpsilon has the best performance
among the eight tested CMOEAs. A common characteristic
of IDEA and MOEA/D-IEpsilon is that both of them keep a
number of infeasible solutions during their evolutionary pro-
cess, which can be concluded that maintaining a small portion
of infeasible solutions in the working population appropriately
can help to enhance the performance of a CMOEA when
solving CMOPs. Furthermore, the experimental results show
that the DE operator has better performance than the SBX
operator on the CF benchmarks, and SBX operator works
better than DE operator on the CTP benchmarks.
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TABLE I
PERFORMANCE OF ATM, CMOEA/D, IDEA, MOEA/D-CDP, MOEA/D-SR, NSGA-II-CDP, SP AND MOEA/D-IEPSILON WITH SBX OPERATOR ON

CF, CTP, BNH, CONSTR, OSY, SRN AND TNK PROBLEMS IN TERMS OF THE MEAN AND STANDARD DEVIATION VALUES OF IGD

Problem ATM CMOEA/D IDEA MOEA/D-CDP MOEA/D-SR NSGA-II-CDP SP MOEA/D-IEpsilon

CF1 mean 5.786E-02 1.549E-02 2.035E-02 1.440E-02 1.954E-02 5.964E-02 5.836E-02 6.057E-03
std 8.845E-03 4.629E-03 2.662E-03 3.676E-03 4.250E-03 8.278E-03 1.078E-02 1.358E-03

CF2 mean 1.472E-01 1.254E-01 5.229E-02 1.184E-01 1.235E-01 1.605E-01 1.510E-01 1.043E-01
std 3.560E-02 5.179E-02 3.819E-02 6.120E-02 6.788E-02 3.815E-02 4.388E-02 4.620E-02

CF3 mean 5.060E-01 3.610E-01 2.043E-01 3.255E-01 3.827E-01 5.414E-01 5.516E-01 3.148E-01
std 1.465E-01 1.307E-01 6.093E-02 1.087E-01 1.425E-01 1.549E-01 1.269E-01 1.252E-01

CF4 mean 1.478E-01 1.772E-01 8.301E-02 1.930E-01 1.797E-01 1.558E-01 1.581E-01 1.176E-01
std 3.145E-02 1.010E-01 2.332E-02 1.231E-01 8.271E-02 4.692E-02 4.719E-02 3.119E-02

CF5 mean 3.885E-01 3.653E-01 2.645E-01 3.892E-01 3.359E-01 3.779E-01 4.217E-01 2.911E-01
std 1.320E-01 1.220E-01 1.325E-01 1.206E-01 1.201E-01 1.144E-01 1.028E-01 1.332E-01

CF6 mean 1.221E-01 1.242E-01 6.602E-02 1.217E-01 1.456E-01 1.188E-01 1.335E-01 1.336E-01
std 4.025E-02 7.640E-02 3.116E-02 6.963E-02 6.211E-02 3.725E-02 4.526E-02 7.205E-02

CF7 mean 3.755E-01 4.681E-01 2.848E-01 3.862E-01 3.589E-01 4.150E-01 3.696E-01 2.481E-01
std 9.599E-02 1.804E-01 1.246E-01 1.544E-01 1.323E-01 1.098E-01 6.571E-02 8.808E-02

CF8 mean 2.574E-01 Inf 2.000E-01 Inf Inf 1.781E+00 2.825E-01 9.945E-02
std 4.353E-02 NaN 3.339E-02 NaN NaN 4.824E+00 2.315E-02 2.783E-02

CF9 mean 2.030E-01 1.060E-01 1.248E-01 1.169E-01 1.105E-01 1.900E-01 1.974E-01 1.070E-01
std 1.366E-02 1.242E-02 1.031E-02 2.784E-02 9.937E-03 9.297E-03 2.193E-02 8.293E-03

CF10 mean Inf Inf Inf Inf Inf Inf Inf 2.974E-01
std NaN NaN NaN NaN NaN NaN NaN 1.669E-01

CTP1 mean 6.681E-03 1.152E-01 5.043E-02 1.293E-01 8.657E-02 6.989E-03 1.276E-02 2.811E-01
std 9.843E-03 7.531E-02 3.041E-02 7.988E-02 6.982E-02 1.299E-02 1.816E-02 6.573E-03

CTP2 mean 4.575E-03 9.847E-03 1.381E-03 1.421E-02 1.656E-02 4.757E-03 4.467E-03 1.253E-03
std 1.719E-03 3.883E-02 7.894E-05 6.330E-02 6.313E-02 2.089E-03 1.625E-03 1.332E-04

CTP3 mean 1.350E-02 3.009E-02 1.430E-02 3.654E-02 4.508E-02 1.456E-02 1.322E-02 1.364E-02
std 1.845E-03 7.485E-02 2.608E-03 6.333E-02 6.336E-02 2.240E-03 2.181E-03 1.772E-03

CTP4 mean 9.407E-02 1.198E-01 1.848E-01 1.860E-01 1.721E-01 1.112E-01 1.131E-01 9.148E-02
std 1.381E-02 6.240E-02 1.451E-01 1.287E-01 1.294E-01 4.229E-02 5.013E-02 1.259E-02

CTP5 mean 9.629E-03 1.069E-02 4.245E-03 9.832E-03 3.079E-02 9.239E-03 9.633E-03 9.578E-02
std 2.677E-03 3.214E-03 1.253E-03 3.186E-03 1.431E-02 2.625E-03 3.159E-03 5.979E-03

CTP6 mean 6.817E-03 8.636E-03 7.582E-03 8.647E-03 3.030E-02 7.040E-03 6.924E-03 4.264E-03
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TABLE II
PERFORMANCE OF ATM, CMOEA/D, IDEA, MOEA/D-CDP, MOEA/D-SR, NSGA-II-CDP, SP AND MOEA/D-IEPSILON WITH DE OPERATOR ON

CF, CTP, BNH, CONSTR, OSY, SRN AND TNK PROBLEMS IN TERMS OF THE MEAN AND STANDARD DEVIATION VALUES OF IGD

Problem ATM CMOEA/D IDEA MOEA/D-CDP MOEA/D-SR NSGA-II-CDP SP MOEA/D-IEpsilon

CF1 mean 8.561E-03 3.480E-03 6.853E-03 3.070E-03 2.307E-02 8.687E-03 1.002E-02 5.127E-03
std 2.532E-03 8.315E-04 1.779E-03 8.381E-04 4.798E-03 4.147E-03 6.302E-03 9.432E-04

CF2 mean 8.727E-02 1.303E-02 1.630E-02 9.885E-03 3.300E-03 9.230E-02 9.413E-02 1.414E-02
std 2.378E-02 2.135E-02 3.634E-03 2.061E-02 1.405E-03 2.917E-02 2.338E-02 2.146E-02

CF3 mean 5.375E-01 2.032E-01 4.357E-01 2.151E-01 1.931E-01 5.378E-01 5.382E-01 2.331E-01
std 1.222E-01 8.802E-02 5.552E-02 9.091E-02 9.376E-02 1.225E-01 1.358E-01 1.474E-01

CF4 mean 8.515E-02 2.739E-02 5.571E-02 3.387E-02 3.779E-02 8.044E-02 8.390E-02 2.725E-02
std 2.923E-02 9.363E-03 5.376E-03 2.208E-02 2.844E-02 1.333E-02 2.231E-02 9.170E-03

CF5 mean 6.311E-01 3.003E-01 4.068E-01 2.903E-01 2.862E-01 6.405E-01 6.152E-01 2.494E-01
std 1.332E-01 1.159E-01 1.066E-01 1.221E-01 1.257E-01 1.268E-01 1.227E-01 1.092E-01

CF6 mean 3.602E-02 6.388E-02 4.796E-02 5.761E-02 6.423E-02 4.295E-02 3.202E-02 6.459E-02
std 9.862E-03 2.313E-02 2.575E-02 2.621E-02 3.227E-02 2.439E-02 6.212E-03 3.588E-02

CF7 mean 6.335E-01 2.701E-01 2.536E-01 2.903E-01 2.753E-01 6.043E-01 6.506E-01 2.076E-01
std 1.946E-01 1.381E-01 8.513E-02 1.652E-01 1.726E-01 1.899E-01 1.793E-01 8.501E-02

CF8 mean 3.032E-01 1.177E-01 2.324E-01 Inf Inf 4.798E-01 3.843E-01 5.112E-02
std 7.533E-02 8.344E-03 4.197E-02 NaN NaN 1.031E-01 4.047E-02 1.030E-02

CF9 mean 2.070E-01 7.974E-02 1.267E-01 7.794E-02 7.727E-02 1.939E-01 1.869E-01 4.914E-02
std 5.243E-02 1.560E-02 1.136E-02 1.483E-02 1.654E-02 4.078E-02 3.566E-02 6.259E-03

CF10 mean Inf Inf Inf Inf Inf Inf Inf 3.007E-01
std NaN NaN NaN NaN NaN NaN NaN 1.707E-01

CTP1 mean 2.169E-03 2.397E-03 2.516E-03 2.622E-03 5.040E-03 2.132E-03 2.158E-03 2.751E-01
std 7.046E-05 6.276E-05 5.630E-05 1.066E-03 9.629E-04 6.155E-05 5.940E-05 8.501E-03
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std 3.401E-03 1.043E-03 8.611E-04 5.609E-04 1.380E-03 3.209E-03 2.692E-03 7.098E-04
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std 4.022E-03 3.465E-04 1.098E-03 8.080E-04 2.873E-03 3.826E-03 5.557E-03 2.929E-04

CTP7 mean 6.338E-04 1.641E-03 7.933E-04 1.641E-03 1.433E-03 6.353E-04 6.297E-04 4.752E-04
std 1.526E-05 5.306E-06 1.569E-05 5.333E-06 4.866E-05 1.812E-05 1.753E-05 1.811E-05

CTP8 mean 1.416E-02 8.577E-03 1.197E-02 8.494E-03 2.018E-02 2.451E-02 1.498E-02 3.303E-03
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